|ASAP光学设计软件|SOLIDWORKS 三维建模设计软件|RP Fiber Power仿真设计软件|武汉墨光科技有限公司
Baidu
map

解决方案

Wolfram 神器秒杀高考数学试题

2017 年普通高等学校招生全国统一考试

数 学(理)(北京卷)



In[1]:= Reduce[{-23},x]

Out[1]= -2



In[2]:= z=(1-I) (a+I); Reduce[{Re[z]<0,Im[z]>0,a\[Element]Reals},a]

Out[3]= a<-1



In[4]:= k=0;s=1;While[k<3,k=k+1;s=(s+1)/s]; s

Out[4]= 5/3



In[5]:= MaxValue[{x+2 y,x<=3,x+y>=2,y<=x},{x,y},Reals]

Out[5]= 9




In[6]:= f[x_] = 3^x- (1/3)^x; FullSimplify [{f[-x] == -f[x], f[-x] == f[x]}]

Out[7]= {True,Sinh[x Log[3]]==0}


由计算可知, f(x) 是奇函数.


In[8]:= Plot [f[x], {x, -3,3}]

Out[8]=



由图可知,f(x) 是增函数.




神器的分步解答,一定不能错过哦!







In[13]:= m=3^361;n=10^80;N[m/n]

Out[13]= 1.7409*10^92





In[14]:= Clear[m];

In[15]:= Reduce[Sqrt[1 + m]/1==Sqrt[3], m]

Out[15]= m==2




In[16]:= ClearAll[a1,b1,a4,b4, q, d]

In[17]:= a1=b1=-1; a4=b4=8; d=1/3 (a4-a1); q=Surd[b4/b1, 3];(a1+d)/(b1*q)

Out[21]= 1



In[22]:= A = {x,y}; P ={1,0};

In[23]:= Sqrt@MinValue[{(x-1)^2+y^2,x^2+y^2-2x-4y+4==0},{x,y}]

Out[23]= 1



In[24]:= Solve[{Sin[x] == 1/3, Cos[x-y] == m , 0 < x < y< \[Pi], x+y == \[Pi]}, m, {x,y}, Reals]

Out[24]= {{m->-(7/9)}}



In[19]:= FindInstance[! Implies[a > b > c, a + b > c], {a, b, c}]

Out[19]= {{a -> -2, b -> -3, c -> -4}}




(1)


In[20]:= A = \[Pi]/3; c = 3/7 a;

jC = jC /. Solve[{c/Sin[jC] == a/Sin[A], 0 < jC < \[Pi]/2}, jC][[1, 1]];

Sin[jC]

Out[22]= (3 Sqrt[3])/14


(2)


In[23]:= a = 7; B = \[Pi] - A - jC;

In[24]:= 1/2 a c Sin[B] // FullSimplify

Out[24]= 6 Sqrt[3]



In[25]:= A = {-2, 0, 0}; B = {-2, 4, 0};

dC = {2, 4, 0}; dD = {2, 0, 0};

P = {0, 0, Sqrt[2]};

PB = B - P;

M := P + t PB;

MA := A - M;

MC := dC - M;

PD = dD - P;

Solve[PD.(MA \[Cross] MC) == 0, t , Reals]

Out[31]= {{t -> 1/2}}


由以上计算可知,M 为 PB 的中点. (2)


In[32]:= DA = A - dD; \[Pi] - VectorAngle[PD \[Cross] DA, PB \[Cross] PD]

Out[32]= \[Pi]/3


(3)


In[33]:= Sin[VectorAngle[MC /. t -> 1/2, PB \[Cross] PD] - \[Pi]/2] // Simplify

Out[33]= (2 Sqrt[2/3])/3




(3)服药者指标 y 数据的方差大于未服药者指标 y 数据的方差.




【解析】(1)


In[44]:= f[x_] = E^x Cos[x] - x;

df[x_] = D[f[x], x];y - f[0] == df[0]*x

Out[45]= -1 + y == 0


【解析】(2)


In[46]:= FunctionRange[{f[x], 0 \[LessSlantEqual] x \[LessSlantEqual] \[Pi]/2}, x , y]

Out[46]= -(\[Pi]/2) <= y <= 1



In[50]:= ClearAll[a, b, c];

In[51]:= a[n_] := n; b[n_] := 2 n - 1;

c[n_] := c[n] = Max@Table[b[i] - a[i]*n, {i, n}]{c[1], c[2], c[3]}

Out[53]= {0, -1, -2}